Telomerase Therapies in our Future

Telomere biology has the potential to extend human life span, to dramatically lower rates of the great remaining killer diseases: heart disease, stroke, and Alzheimer’s.  All three diseases increase exponentially with age, and their toll will be slashed as we we learn how to address the body’s aging clocks.

You would think that the 2009 Nobel Prize might have done more to raise the profile of research in telomere biology, but the field remains a specialized backwater of medical research, and few biologists (fewer doctors) take it seriously as a panacea for the diseases of old age.  If the National Institute of Health has money to put into heart disease and cancer and Alzheimer’s and Parkinson’s diseases, there is no better place to invest than in telomere biology.  Research on these diseases commands multi-billion dollar budgets, because they are considered “medicine”, funded by NIH, while telomere biology is considered “science” and is funded by NSF.  The total NSF budget for all cell biology is only $123 million, and the portion devoted to telomere biology is a few million. The private sector is doing a little better – there are several companies selling herbs that stimulate our own bodies to liberate telomerase.  But this is short-sighted venture capital, and what we need is focused research with a ten-year vision.

There is good reason to think that telomere length is a primary aging clock in the human body.  The body knows perfectly well how to lengthen telomeres, but chooses not to.  All we have to do is to signal the body to activate the telomerase genes that are already present in every cell.   Of course, there is no guarantee that this will work, but compared to the sluggish rate of progress on individual diseases, it’s a pretty good bet, and the target is rather simple.  IMHO, it’s worth a crash research effort.

Three objections raised against telomerase research

1.  “Aging is inevitable because Physics tell us that nothing can last forever.”  This statement refers to the Second Law of Thermodynamics, which says that closed systems, evolving in isolation, must become more disordered over time.  But living systems are open, taking in free energy in the form of food or sunlight, dumping their entropy out into the environment.  There is no reason that such systems cannot maintain themselves indefinitely.  Indeed, growth and maturation would not be possible if this law of physics applied to open thermodynamic systems. Since the 19th Century when the laws of thermodynamics were formulated, it has been understood that aging cannot be explained from physics, and therefore commands an explanation from evolution.

2. “Evolution has been working to maximize animal life spans in order to increase fitness.  It is unlikely that any simple adjustment to physiology that humans can discover will do better than evolution has done over millions of years.”  In fact, evolution has not worked to maximize life span, but only to make it sufficient to assure time for reproduction.  Aging is a form of programmed death, on a flexible but finite schedule.  It is fixed in our genes.  There are mechanisms of aging that have been programmed into living things since the first eukaryotic cells.  Telomere attrition has been used to time the life cycle and form a basis for programmed death for at least a billion years.  Many species of protozoans do not express telomerase during mitosis (but only during conjugation), so their telomeres shorten with each reproduction, leading to a limit of a few hundred reproductions per cell line.  This mechanism is the precursor to telomeric aging that exists to the present day in humans and many other higher animals.

3.  “Expressing telomerase will increase the risk of cancer.” There is a great deal of theoretical concern in this direction, which I think is entirely misguided.  It is true that cancer cells express telomerase.  It is not true that expressing telomerase causes a cell to become cancerous.  This relationship is clearly explained by two seasoned experts (Shay and Wright 2011)

In early studies, the only way of increasing telomerase activity in lab animals was to add extra genes for telomerase.  Technology in the early 2000s did not permit a gene to be added at a targeted location, but only inserted randomly into a chromosome.  Tampering with the structure of DNA in this way is known to increase cancer risk no matter what gene is added or subtracted.  In three of these early studies, cancer rates in mice were increased [123].

There are no lab studies to my knowledge in which activating the native telomerase has increased the risk of cancer.  The modern view is that “while telomerase does not drive the oncogenic process, it is permissive and required for the sustain growth of most advanced cancers.”  Recent perspectives from both Harvard lab of de Pinho and the Spanish lab of Blasco focus on the potential for telomerase to decrease cancer risk, and these were the very people who produced the three studies suggesting caution a decade earlier.

And there are many studies showing that (a) telomerase expression does not increase cancer risk in lab animals, and (b) short telomeres are a very strong cancer risk.  I believe that telomerase activators will greatly reduce the cancer rate, first by eliminating cells that are pro-inflammatory and potentially carcinogenic because their telomeres have become short, and second by rejuvenating the immune system, which is our primary defense against cancer.  I published an article on this subject last year.

Why we might expect big life expectancy gains from extending telomeres

This is the affirmative question, then: what makes me think that telomere extension will have such a powerful effect on diverse aspects of aging biology?

A)    Telomere attrition is an ancient mechanism of aging.

Protists were the first eukaryotic cells, and they appeared on earth a billion years ago (they were a leap up in complexity from bacteria, which had been around 3 billion years before).  In protists, DNA is linear and hence there are telomeres and a need for telomerase.  Since protists reproduce by simple cell division, you would not expect that the cells would “age” or even that the concept of aging could have any meaning for their life cycle.  But a protist cell lineage can age, and indeed some do.  This is the oldest known mechanism of aging, and it is implemented through withholding telomerase.

Paramecia are an example.  When paramecia reproduce, their cells simply fission, the DNA replicates, and telomerase is expressed.  Hence, telomeres get shorter with each cell division. Paramecia can conjugate, which is a primitive form of sexual gene exchange.  Two paramecium cells merge, mingle their DNA, and then separate.  It is only in the conjugation process that telomerase is expressed.  Therefore, any cell lineage that does not conjugate will die out after a few hundred generations.  This prevents cell colonies from becoming too homogeneous.  Thus aging is a billion years old, and some of the genetic mechanisms of aging have been conserved and passed on through all the transformations of multicellular life (William R Clark has written two accessible books [12] on this topic.)

B)    Telomeres shorten with age in humans.

This has been known for twenty years.

C)    People with shorter telomeres have a much higher risk of mortality.

This was established by Richard Cawthon (2003) in a paper which took the field by surprise.  Researchers before then had assumed on erroneous theoretical grounds that telomere attrition, which was known to occur, could not have anything to do with human aging.  After all, if aging were as simple as telomere attrition, then the body could solve the problem merely by expressing telomerase.  This would enhance individual fitness.  Why would not evolution have found such a simple expedient?  (The answer, of course, is that natural selection favors aging, for the sake of the demographic stability – an evolutionary force not recognized by most evolutionary biologists.)  In Cawthon’s study, the top ¼ of 60-year-olds in terms of telomere length had half the overall mortality risk as the bottom ¼.  Cawthon had access to a unique database of 20-year-old blood samples, and to my knowledge his study has not been replicated or refuted these 11 years.


D)     People with short telomeres have a higher risk of diseases, especially CVD, after adjusting for age.  The association with cardiovascular disease has been consistent, not just in Cawthon’s original study, but also several other studies [Ref Ref Ref].  There are also associations with dementia [RefRef] and with diabetes [RefRef].

E)    Animals with short telomeres also have a higher risk of mortality, after adjusting for age.

This has been established in several bird species [Ref Ref Ref], and in baboons.  In 2003, it was already known that long-lived species tend to lose telomere length more slowly, and short-lived species lose telomeres more rapidly.

F)    In limited studies with mice, telomerase enhancers have led to rejuvenation.  (Mice are expected to be a much less effective target for this strategy than humans, because to all appearances, aging in humans relies on telomere attrition much more so than in mice.)

The first experiment of this type was done in 2008.  In the Spanish lab of Maria Blasco, Tomas-Loba engineered mice that were both cancer-resistant and contained an extra telomerase gene, expressed in some tissues where, even in mice, it would not normally be found.  Cancer-free mice with the extra telomerase lived 18% longer than cancer-free mice with only the normal gene for telomerase.

But soon it was discovered that all the experimental precautions around cancer may not have been necessary.  The same lab Bernardes de Jesus (2011) reported that they could increase health span in mice with the commercial product called TA-65 (widely rumored to be cycloastragenol) with no increase in the incidence of cancer.  Cycloastragenol is a weak telomerase activator compared to man-made chemicals discovered at Sierra Sciences, and even compared to some other herbal extracts.  Nevertheless, the Blasco lab was able to show that the shortest telomeres in the mice were elongated, and that markers of health including insulin sensitivity were improved by short-term treatment with TA-65.

Blasco’s lab then worked with a more potent (though more dangerous) method of telomerase induction: infection with a retrovirus engineered to introduce telomerase into the nuclear DNA of the infected cell.  “Treatment of 1- and 2-year old mice with an adeno associated virus (AAV) of wide tropism expressing mouse TERT had remarkable beneficial effects on health and fitness, including insulin sensitivity, osteoporosis, neuromuscular coordination and several molecular biomarkers of aging.” (Bernardes  de Jesus, Vera et al. 2012)  The mice lived 13% longer when AAV treatment began at age 2 years, and 24% longer when treatment began at 1 year.  There was no increase in cancer incidence.

The most dramatic example of rejuvenation is from the Harvard laboratory of Robert de Pinho.  Normally, mice (unlike people) express telomerase freely through their lifetimes.  These scientists engineered a mouse without the normal (always on) gene for telomerase, but instead had a telomerase gene that could be turned on and off at will by use of a chemical signal that the experimenters could feed to the mice.  As these mice grew older, they developed multiple, severe symptoms of degeneration in the testes, spleen, intestine, nervous system and elsewhere.  All these symptoms were not just halted but reversed when telomerase was turned on late in the animals’ lives. The effect on the nervous system is particularly interesting because nerve cells last a lifetime and do not depend on continual regeneration from stem cells, the way blood and intestinal and skin cells do.  Nevertheless, these mice with telomerase turned off suffered sensory deficiencies and impaired learning that was reversed when the experimenters administered the chemical signal to turn telomerase back on.

Stanford/Geron research group worked with “skin” grown from human cells in a lab setting.  They found they were able to restore youthful elasticity, softness and texture to the cultured “skin” by infecting the cells with an engineered retrovirus that inserted the gene for telomerase.

G)     In addition to its function in lengthening telomeres, telomerase also acts as a kind of growth hormone.

This fact was suspected as early as the 1990s, and confirmed definitively in a Stanford experiment [RefRefRefRef].  In this experiment, mice were engineered with “denatured” telomerase that lacked the RNA template for creating telomeres.  Still, the telomerase was shown to induce hair growth.  Telomerase has been shown to activate affect a hormonal signaling pathway called Wnt. Other functions for telomerase are reviewed by Cong and Shay (2008).

H)        In one human case, huge doses of herbal telomerase activators has led to rejuvenation.

I am recently in touch with a physicist from Kansas who has been taking super-high doses of telomerase-activating herbs and supplements for six years and claims to look and feel younger, with improved athletic performance.  He may be an interesting case study.  Jim Green has commented on this blog site.

 The Bottom Line

In my opinion, telomerase activation is a field that offers the most potential for human life extension in the next few years.  This research is languishing for lack of funds, and for lack of attention.

pf button Telomerase Therapies in our Future

Leave a Reply

Your email address will not be published. Required fields are marked *

* Copy This Password *

* Type Or Paste Password Here *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

  1. Thanks for this great article. I’ve been trying to find information about telomerase and just have to believe that there is something in nature that does not require all this high processing to extract the essence of what we need. I’ve seen supplements claiming that animal glandulars activate this enzyme, certain vitamins will activate it and so forth. Could be something as simple as exercise, fresh air, or even “grounding” to the earth. Whatever it is, it’s probably right under our noses.

  2. Hi there, I discovered your web site via Google while searching for a similar subject, your web site got here up, it seems great. I’ve added to favourites|added to bookmarks.

  3. Hi Josh,

    I’ve enjoyed reading your blog and also your essay in “Lynn Margulis – the life and legacy of a scientific rebel”. I have a (genuine) question:

    Why are you (and others) so focussed on prolonging and preserving human life?

    Many thanks


    • Thanks, Chris.
      Your question is about fundamental values and not about science.

      On the one hand, human overpopulation has been a bane on the earth’s bounty, disruptive to the ecosystems created over many millions of years. Overpopulation is a result of lowering birth rates chasing lowering death rates, but not quite fast enough…

      On the other hand, our society spends huge sums of money on medical care, and most of this is tending to diseases of old age. If we as a society are already pouring resources into medical research into cancer and heart disease and diabetes, if treatment of these diseases costs us hundreds of billions of dollars a year and a great deal of suffering, then it would seem to be worthwhile to forestall all of these diseases at once with a generalized program of life extension.


  4. First of all, my sincere compliments for the blog.

    I am not a life scientist (I am a mathematician), but I have been a bit puzzled by this post.

    Telomerase is highly expressed in many human tumors (that’s why cancer cells are mostly immortal, namely they bypass Hayflick limit). Suppressing telomerase is considered a target for cancer therapy.
    Moreover, while it is true that mice have highly expressed telomerase, it is also true that most of them die of cancer (I think it is the 80% in lab) where telomerase is expressed in somatic cells. This does not happen with larger animals where telomerase is expressed only in the embryo and in some pluripotent cells, but not in somatic cells. So turning off telomerase seems to be a protective mechanism against cancer.
    It seems that the problem is that cancer cells know how to unlock the key.

    • “This does not happen with larger animals where telomerase is expressed only in the embryo and in some pluripotent cells, but not in somatic cells. So turning off telomerase seems to be a protective mechanism against cancer.
      It seems that the problem is that cancer cells know how to unlock the key.”

      Lobsters are said to express telomerase throughout and are said to have low cancer incidence. Regards cancer, it is said there is a telomerase free alternate method of extending telomeres.

  5. Found TA-65 at $2000 a bottle! Seems like only the wealthy will be able to stay young!
    Hopefully a telomerase inducer will be found cheap enough for an old maths teacher like me! I’d love to keep my mind intact for a few more decades.

    • It’s bad, but it’s not that bad. TA-65 costs a few hundred dollars a bottle, not $2000. You can find it on EBay or Amazon Market.

      TA-65 is widely rumored to be cycloastragenol. You can find cycloastragenol from China far cheaper at these same sources.

      Product B is based on different herbs from different sources. On the one hand, it’s stronger than TA-65 in lab tests. On the other hand, there’s actual clinical data for TA-65 showing its effectiveness, and there is none for Product B. Product B is about $75/month.

      The first ingredient in Product B is Silymarin. You can find Silymarin for much less than Product B. Here’s a web page with other ingredients in Product B:

      • A big seller of TA65, claims that milk thistle extract which has Silymarin does not activate telomerase. But given that this is a competing product, an independent test and claim would be more reliable than one from entities vested in outcomes.

  6. Your article was fascinating in an opposing way and your blogs are truly interesting, but I disagree with your premise!

    Isn’t the increase in telomerase, the potential for a longer cell life, and the increase in the number of cell divisions in its life time going to increase the chance for cancer, not provide youth? As the cell division increases, the oppertunity for an error in cell division to occur increases as well and the chance for cancer goes up? Isn’t that what cancer is, an “error” in cell division? If more time is alotted for an error to occur, it most likely will? If you have read, the scientific world has noted that an increase presence of telomerase has occured in many cancer patients and could be used as a future alert for people who might have cancer. Telomerase is the cause, not the solution. The increase in telomerase allows the cancer immortality. Your article, naive, is written on the pretense of a perfect world where if the protein causes immortality in cancerous cell, then it must do the same for healthy ones. The thing is were not in a perfect world and the effects and complications were not considered. Where both of us are standing, cancer by regulation of telomerase and cancer by an over production of telomerase, cancer is still occuring and nothing seemed to happen, except one life was focused on living and the other was focused on prolonging life.


    • Alexandra -
      You are correct that there is a widespread assumption among biologists that “it can’t be that easy” – that if evolution had such an easy path to a longer life span, then we would have evolved to express telomerase. So the view you express is quite traditional. Judith Campisi has written on this subject.
      However, the actual evidence does not indicate that turning on telomerase increases cancer risk. There have been experiments with mice in which telomerase is turned on, the mouse lives longer, and cancer risk is not increased. Furthermore, people with short telomeres have much higher risk of cancer. I have written a paper on the subject, to be published next month.

  7. I used ta-65 for a little over a year, while deployed in Afghanistan (as a contractor, I could afford it, though only 1/2 dose). It did more for me, particularly mentally, than anything I had ever used. I’ve had lasting effects in the reduction of bad anxiety and depression, not a miracle but definitely noticeable.
    I can’t afford it with a stateside job, but I did try the crack aging cycloastrenegol for about 60 days. It just didn’t seem at all to be the same; especially the deep sleep and active dreaming produced by the ta-65. I’d always feel so extremely rested; I get a similar, though not as pronounced effect by taking n-acetyl-cysteine before bed.
    Other effects, my chest hair (I’m 52 but have little grey hair on my head) turned from grey to a mixture of dark brown and some grey. I’ve been off it for 1.5 years now and the grey is coming back again. :(

    Sure wish I could keep taking the ta-65!!

  8. Well, I think I’ve put Death In Chains with ,
    but it takes quite a while to roll through it, and then you have to start
    all over again, to refresh yourself. Ergo it mirrors the Myth of Sisyphus,
    by Albert Camus, which resembles Albert Caw-”mu”s, which reminds me of
    my work on the gravitational coupling constant mu in classical general
    relativity and in electromagnetic-like gravitation, described at . Furthermore,
    the Myth of Sisyphus seems to roll by each year up on the celestial sphere,
    in the constellations. Each year the rock reaches the perihelion of its orbit
    as Orion chases Perseus-Pleiades-Aries across the sky, but there is a phase
    where the Hero of the Stars seems to fall like Bootes perched on the
    Handle of the Big Dipper back into Summer heat.
    For an extensive list of telomerase activators that are being examined, see .
    I don’t think any more extensive list is available online.

  9. Josh, I might have missed this in the comments, but I’m wondering what avenue you have taken? Do you pay the $100′s or do you take one of the cheaper alternatives and still feel the effects, if that question isn’t too personal? I feel I could benefit but definitely don’t have money to waste.

    • I’m always experimenting as I learn. I’m hesitant to share my own practices until they become more consistent. Lately, I’ve discovered that astragalus root is sold by the pound in Chinese groceries, about 100 times cheaper than the pills. I’ve been taking silymarin and ashwaghanda and horny goat weed rather than Product B, also to save money.

      As for “feeling the effects”, this is not why I’m taking these supplements. I’m hoping that they have their effect in the long run. I hope to slow aging over a period of years and decades. Anything I feel today from taking a pill today is a distraction at best.

  10. Com relação a telomerase e câncer, talvez se possa associar a relação que se fazia equivocadamente ao câncer de próstata e testosterona. Se a testosterona fosse a responsável pelo câncer de próstata, a incidência maior seria na juventude quando a testosterona é mais alta. Ao contrario, o câncer de próstata atinge pessoas mais velhas.

    Google translate from Portuguese:
    With respect to telomerase and cancer, perhaps one can associate the relationship that was mistakenly to prostate cancer and testosterone. If testosterone were responsible for prostate cancer, the incidence was higher in youth when testosterone is highest. Rather, prostate cancer affects older people.

  11. I’m grateful for this website Josh, and I am surprised at how little scientific work there is on the “aging problem.”

    I’ve recently started a regimen of NR (4000mg) and astragalus (2500mg) at 42 years old and we’ll see how it goes. I have noticed that since starting the NR that my strength in the gym has noticeably increased. I’m now benching more weight than I was when I stopped weight lifting 10 years ago… No, nothing dramatic like sci-if, but only by a few pounds, but still a noticeable amount to myself.

    I’m also a physicist by degree so I’m watching my own experiment and trying to be objective. I applaud your work here, and will keep reading up on your work here.